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Abstract

Using a convergence theorem for Fourier—Padé approximants constructed from orthogonal
polynomials on the unit circle, we prove an analogue of Hadamard’s theorem for determining
the radius of m-meromorphy of a function analytic on the unit disk and apply this to the
location of poles of the reciprocal of Szegd functions.
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1. Introduction

Let o be a finite positive Borel measure whose support supp(s) is contained in
I'={z:|z| =1} and ¢,(z) = k,z" + --- € Py, K, >0, the orthonormal polynomial of
degree n with respect to . It is said that ¢ satisfies Szegd’s condition, and denote it
ges, if

[ oz latl> - 0.

*Corresponding author.
E-mail addresses: dbarrios@fi.upm.es (D.B. Rolania), lago@math.uc3m.es (G. L6. Lagomasino),
esaff@math.vanderbilt.edu (E.B. Saff).

0021-9045/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2003.08.002



264 D.B. Rolania et al. | Journal of Approximation Theory 124 (2003) 263281

where ¢’ denotes the Radon—Nikodym derivative of ¢ with respect to the arc length
on I'. The associated (interior) Szegd function is given by

Z_f-l—z

Ss(z) = exp{ |dC|} |z] < 1.

We denote by S the class of all finite positive Borel measures on I" such that

lim sup [,(0)['"" = 1/p(c)<1. (1)

It is well-known (see (2.1), (2.5), Theorems 6.2 and 7.4 in [5]) that this class
is made up of all measures satisfying Szegd’s condition such that the largest
disk with center at z=0 to which S;! can be extended analytically has
radius p(o)>1. Moreover, ¢ is absolutely continuous with respect to the
Lebesgue measure and do(z) = |S,(z)|* d0,z = €. For these and other character-
izations of this class of measures see also Theorem 1 and its Corollary
in [10].

Let D = {z:|z|<1} and f e H(D); that is, f is analytic in a neighborhood of the
closed unit disk. We define the following determinants:

<Z’1171fa ‘Pn> <Zm72f7 (Pn> <fa 90,1>
<Zm_lf7 q)n+m—l > <Zm_2f7 (pn+m—1 > <f7 qon«fm—l >
where <-,-> denotes the usual inner product in the Hilbert space L,(o). Set
Iy = bu(f) = limsup |A,|'", o =1. (3)
n

It is not difficult to verify that /,<1 for all meZ, (see Lemma 1 below). For
feH(D), by D,,(f) ={z:|z|<Rn(f)} we denote the largest disk centered at z =0
to which f can be extended to a meromorphic function with at most m poles. We
write D,,, or R,, when it is clear to which function the notation refers. Here and in the
following, poles are counted according to their multiplicities.

Our main result is

Theorem 1. Let €S and f € H(D). Then for all meZ.,., we have

Zﬂl
: (4)

Rm = I
m+1

where by convention 0/0 = co.

Theorem 1 is an analogue of Hadamard’s celebrated result for determining the
radius of m-meromorphy of an analytic function in terms of its Taylor coefficients.
For a proof of Hadamard’s Theorem see [6] or [3].
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Theorem 2 (Hadamard [6]). Let g(z) =Y., (gnz" be an analytic function on some
neighborhood of z = 0. Then, for each m>=0 we have

/!
Rm(g) = Am ’
lm-H
where Iy = 1 and [,, = lim supn|H,1.m|1/”7
In-m+1  Yn-m+2 gn
Hwn _ gnffn+2 gnf.m+3 gn.+l . me N, n=m— 1, (5)
In In+1 Intm—1

(here, as in (4), by convention 0/0 = o).

The proof of Theorem 2 relies on the behavior of row sequences of Padé
approximants. Let us consider the analogous construction for general Fourier
expansions in terms of the orthogonal polynomials with respect to o.

Let n,m be two fixed non-negative integers. Then, there exist polynomials O,
and P, ,, such that

(1) deg Pn,m <n, deg Qn,m m, Qn,m #0,
(11) (Qn,mf - Pn,m)(z) = An,l(anrerl + An,ZQDnerJrZ +

The quotient R,,, = P, ,/Onm of any solution of the system above is called an
(n,m) Fourier—Padé approximant of f (relative to the measure o). Given (n, m), more
than one rational function may be defined (even after cancelling out common
factors). If all solutions of the system above satisfy that deg Q,,,, = m, then R,,, is
uniquely determined (see [14]). Since by construction Q,,,#0, we will normalize it
with leading coefficient equal to 1.

Let ¢ be a measure on I' such that

lim ®,(0) =0, (6)

where ®, = ¢,,/k, denotes the monic polynomial of degree n orthogonal with respect
to o. In this case, we write oe. /. It is well-known (see [11] and the references
therein) that ¢/ >0 a. e. on I is sufficient for (6) to take place. The proof of Theorem
1 is based on the following result.

Theorem 3. Let ae Ay and f € H(D). Then the following statements are equivalent:

(a) f has exactly m poles {z1,z, ...,z } in Dy,
m

(b) there exists a polynomial Q,,(z) = [[;_,(z — z«) such that

lim sup || Qum — Ol = g<1, (7)
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where || - || denotes the usual norm in the space of polynomial coefficients. If either (a)
or (b) takes place, then

Ry = max |z|/q (8)
and

lim sup Ilf— anH max |z|/Rm, 9)
where A~ denotes an arbitrary compact subset of Dp\{zi, ...,z } and || - ||, denotes

the sup-norm on A'.

This theorem is basically due to Suetin. For Fourier—Padé approximants with
respect to measures supported on the real line, he proves in [13] that (a) implies (b),
(9), and that R,, <maxj<i<m |2k|/q- He also states without proof the corresponding
result for Fourier—Padé approximants relative to a measure supported on an arc of
the complex plane whose orthogonal polynomials have Szegd type strong asymptotic
behavior. In the theory of Padé approximants such results are called of direct type
and follow the structure of de Montessus de Ballore’s Theorem [9]. In [14], for
measures supported on the real line, Suetin proves that (b) implies (a) and
R, =max|<i<m |zk|/q. These are inverse type results. In [14], other types of Fourier
expansions are not mentioned. The proof for measures on the unit circle (of the
direct and inverse statements) is essentially the same as the one given by Suetin for
the case of the real line, so we omit it. In Section 2, some auxiliary lemmas are given.
Theorem 1 is proved in Section 3.

Because of the analytic properties of S; ! when oeS, we can apply Theorem 1 to
/= S;!in order to obtain the distribution of poles of this function along circles
centered at the origin. We get

Ru(S;") = 1(S;N) /lnsi (S, 1), meZ,. (10)

Since (see (2.1), (2.5), and (2.10) in [5])

1 0
- Z q)n
n=0

R

where

-1
K—eXP{E / logo'(@da}

by analogy with Hadamard’s Theorem one is tempted to replace 1,(S;') by

|1/n

lim sup,|H,,,»|'" in formula (10) with

DPy—mt1 (0) Py—m+2 (0) e (Pn(o)
anm _ . . . .

QDn(O) §0n+.1 (O) . '. aner;l (0)
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as was conjectured by one of the authors in [8]. In this form the formula is not
correct as the following example shows.

Let o be the measure whose reflection coefficients are given by ®,(0) = " where
0<|a|<1.In p. 180 of [2] it was shown that the corresponding Szegd function has a
simple pole at 1/a (thus Ry = 1/]a|) and lim,, ||Q,.1(z) — (z — 1/a)|| = |a|*. According
to Theorem 3, we have that R;(S,!) = 1/]al’. On the other hand, it is obvious that

1-7,,,2 =0 and we would get the wrong formula for R, (S;l).
Nevertheless, using (10) it is possible to prove the following formula:

Corollary 1. Let oeS. Set

o 0) T - 9,0)
—1 -2
A, —|om O GO 9,(0)
. 5 ' '
oD 0) @l P0) - @y (0)

and

1:77 = lim sup |An,m|l/n; l;) =1
n

Then, [, = 1,, and

Ry, ==— me”Z,.

Corollary 2. Let ©,(0) = d"(c+¢,),neN, be a sequence of reflection coefficients,

. 2 .
where ¢#0 and lim sup, (max;, |.9j|)1/" =d<|al™ ,m=>1. Let a denote the associated
measure on the unit circle. Then,

1
1

e )= T

Ry 1(S
|al

and S;!' has exactly m — 1 simple poles in D,, | located at the points l/a|a|2(k71), k=
1,2,...,m—1.

Corollary 3. Under the same assumptions as in the previous corollary, if 6 = 0, then
S-1is a meromorphic function in the complex plane with simple poles located at the

points 1/ala** ™V keN.

When @,(0) = d",neZ, an explicit expressions in the form of an infinite product
for the Szego function was obtained by Szego (see [15]). In particular, it was known
that the Szegd function is analytic in the whole complex plane with simple zeros
precisely at each of the points indicated in Corollary 3.
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Some special cases to which Corollaries 2 and 3, respectively, may be applied are:

(1) ©,(0) = cd" + p(b"), where ¢#0, p is a polynomial, and |b|<|a|’"2 for a given
meZ,.

(2) @,(0) = ca" + p((1/n)"), where ¢#0 and p is a polynomial.

(It is assumed in these examples that ¢ and p are such that the necessary condition

for the existence of an orthogonality measure |®,(0)|<1,neN, is satisfied.)
The proof of the corollaries is carried out in Section 4.

2. Lemmas and auxiliary results

Let ¢,(z) = ,®,(z), 5, >0, be the nth orthonormal polynomial with respect to
oe Ny and

%@=/ﬂ@wm

z—(
the associated function of second type. Using that
D,11(z) = z0,(z) + Dy (0)D; (2), (11)

where @) (z) = z"®,(1/z) is the so-called nth reversed polynomial, and
1 - (Krl/Kn+1)2 = |(I)n+1(0)‘2

(see e.g. formulas (1.2) and (1.5) in [5]), it is easy to verify that (6) is equivalent to
each one of the following relations

. Kn+1

lim ~2L — 1 12

im = (12)
and

lim Lee1G) _ (13)

n@,(2)

uniformly in {z:|z|>1}. On the other hand (see Theorems 4 and 7.4 in [7]),

condition (6) implies that |(pn|2da converges in the weak-star topology of measures to
the unit Lebesgue measure on I'. Since from orthogonality

2
o)) = [ 12 o)
z—{
using (13) and the weak-star convergence, it follows that
. Yn+l 1
1 =- 14
im 5=, (14)

uniformly on compact subsets of {z: |z|>1}.

Properties (12)—(14) are all that it is needed from the measure in order to prove
Theorem 3 following the scheme employed by Suetin in [13,14] in proving the
analogous result for measures supported on the real line.
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For most parts of the proof of Theorem 1, it is only required that
lim KM = (15)
and
lim [, (2)]"" = |2I, |2|>1, (16)
where convergence is uniform on compact subsets of {z: |z| >1}. These properties

immediately follow from (6) on account of (12) and (13), respectively. In proving

Theorem 1 we are forced to restrict the class of measures to 6€S because at one
point we need (1) to derive estimate (25) below. Either (15) or (16) characterizes the
set of all measures with supp(s) = I belonging to the class Reg of regular measures
(for details about this class of measures see Theorem 3.1.1 in [12]).

The following lemma is obtained using (16) in the same way as similar statements
are proved for Taylor series. The only delicate point is to ensure that the sum of the
series is f, but this is guaranteed because

1S = Salla<lf = Tul<o(D)If = Tl

where S, and T}, denote the nth Fourier and Taylor partial sums whereas || - ||, and
||-]],, denote the L,(c) and the uniform norms, respectively. Since fe H(D), it
follows that

fim |1/~ 5,1, =0
and by the principle of analytic continuation f* and the sum of the Fourier series

coincide. For details see Theorems 6.2 and 7.4 in [5]. This lemma will serve as the
induction basis for the proof of Theorem 1.

Lemma 1. Let supp(s) =T, ceReg, and f € H(D). Then,
f@) = <00 0.(2), (17)

n=0

uniformly on each compact subset of Dy, where
Soo> = [ 1@ dotz),

For each z such that |z| > Ry the series in (17) diverges. Moreover,
1

h=limsup [<f,@,>"" = Timsup [{f, @y > = o<1,
n n 0
The following Lemma will also be quite useful in proving Theorem 1.

Lemma 2. Let supp(s) =T, ceReg, and f € H(D). Then,
In<(Ro-Rym1) '<1, meN={1,2,..}.



270 D.B. Rolania et al. | Journal of Approximation Theory 124 (2003) 263281

Proof. For each ieZ,, let iy denote the number of poles which f* has in D;(f)
(counting their order). Take ¢; as the monic polynomial of degree i which has a zero
at each pole of /" in D;(f) and i — iy zeros at z = 0. Therefore, deg ¢; = i and

Ro(qif) = Ri(f).

Because of Lemma 1, it follows that
lim sup < g f, ¢, >|"" = 1/Ro(qif) = 1/Ri(f). (18)
n

Fix meN. Consider the determinant A,,,, defined in (2). Adding to the first column
an appropriate linear combination of the rest of the columns, from the properties of
the determinants, we obtain

Lqm-1 S, 00 " 0,0 Sson>
A _ <qm71f7 (] > <Zn772fa (| > <f7 Pnt1 >
<qm71fa (Pn+l71—1 > <Zm_2f7 (/7n+m—l > T <fa (Pn+m—1 >

Proceeding analogously from the second column on, it follows that

<melfa §0n> <qn172f, §0n> <fv (pn>
A _ <Qm—lf7 (pn+l> <qm—2fa (pn+1> <f7 (pn+l>
<qulfa Pprm—1 > <(Jmfzf7 DPyrm—1 > <fa DPntm—1 >

Expanding this determinant, we obtain a sum of m! terms each one of which has
exactly one factor representing each column. According to (18), it follows that
the nth root of each one of these terms has limsup not greater than
(Ro(f)-~~Rm,1(f))71. Since the number of terms in the expansion of the
determinants remains fixed with n, the statement of the lemma follows. [

3. Proof of Theorem 1

The proof of this theorem is carried out by induction on meZ,. By definition
ly = 1, therefore, for m =0 formula (4) follows from Lemma 1. Fix m>1 and
suppose that (4) holds for all indices up to m — 1. Let us prove that it is also
true for m.

From Lemma 2, we have that /;<1 forall ieZ,. If R,, = o0, according to Lemma
2 we have that /,,.; = 0. Hence, R,, = I,,//,,+1 as needed (recall that by convention
0/0 = o0). Therefore, we can assume that R,, < oo. Consequently, R;< oo for i =
0,1, ...,m. By the hypothesis of induction, we have that R, = ;/l;11,i = 0,1, ...,m —
1; therefore, /;>0,i=0,...,m. Multiplying these equalities, we obtain that
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Ry Ry = 1/l,< 0. Using again Lemma 2 (for the index m + 1), we get

lm/1m+1 >R0"'Rm/R0"'Rmfl = Rm-

Now, it rests to show that R, =1, /1,1
Notice that

lmfl/lm = Rmfl < Rm < lm/1m+1-

If ly—1/ly = ln/lns1, we would have equality throughout and, in particular, R, =
Im/lnv1 as needed. Hence, it is sufficient to consider the case when R, < o, R; =
Liflig1,i=0,...,m—1,and Iy /ly<ly/lni1, or what is the same

Lnbnir )2 < 1. (19)

Our next goal is to prove that under these conditions there exists a polynomial Q,, of
exact degree m such that

fim sup [|Qum — Ol b1 /1< 1. (20)

Suppose this has been proved. Then, according to (7) and (8) in Theorem 3, we have
that

max |Zk‘/Rm <hn-1lns /1131

I1<k<m
and f has exactly m poles in D,, at the zeros zy, ..., z, of the polynomial Q,,. This
implies that R, = max <k <m|zk|- Consequently,

Rm—l/Rm < lm—l Zm+l /l,%/, = Rm—l Zm+l /lm-

Cancelling out R,,_; on both sides of this inequality, we get

Rm>lm/lm+l7

and we are done. Therefore, to conclude the proof of Theorem 1, we must
show that under the induction hypothesis (20) holds if (19) takes place and
R, < .

First, let us prove that Q,,, is of degree m for all sufficiently large n. Set O, ,(z) =
02 + 12"+ - + . By definition, {Quumf,@p> =0 for k=1,...,m.
This is equivalent to

—Cnod <me7 (pn+k> = Cn1 <Zm_1f7 (pn+k> + ot Cn,m <f> (e > )
k=1,....m. (21)
The determinant of this system is A,y;,. If we can show that A, ;,,#0 for all
sufficiently large n, then we can guarantee the existence of a unique solution on the

coefficients ¢, ..., ¢,m of the non-homogeneous system which is obtained above
taking ¢, = 1.
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In the sequel, we write A, ,,(g) and /,(g) to specify that the notation is relative to
some function g¢. In particular,

<me7€0n> <Zf790n>
An,m (Zf> = - . .
<me’ Pptrm—1 > o <Zf7 Prtm—1 >
By Sylvester’s determinant identity (see (30) p. 33 in [4]), we have

An+1,m+l(f)AnJrZ.mfl(Zf) = Arl+l,m(zf)An+2,m(f) - An+2.m(zf)An+l,m(f)~ (22)
From Lemma 2 applied to zf and the induction hypothesis, we have that

1 sup (At et () Aus2mi1 (21"

n

b1 (f)m-1(2f) <RO(zfl)m-ﬁ-—'ll(é;)2(Zf)
i) (N (1) <B ). @)

" Ro(f) Rua(f)
Now, let us show that

An-H,m (Zf)An+2,m(f) = Apnyam (Zf)An-H,m(f)
= An,m(f)An+2,m(f) - Aﬁ+l,m(f) + €n, (24)

where lim sup,, |c,1|1/ "<[2(f). Having proved this, using (22)—(24), we obtain

limnsup A () Dz (f) = Ai+1,m(f)|l/n <b(f)- (25)

Let us compare the determinants A, ,,(zf) and A, ,,(f). Let ¢; be the polynomials
introduced in the proof of Lemma 2. Notice that Ry(zq;f) = Ro(q:f) = Ri(f).
Proceeding as in the proof of Lemma 2, using (11) and the distributive law for
determinants, we have

An+l‘m(zf)
Knt1 " Kntm
<qu71f7 z®, +(Dn+1(0)(DZ> <Zf7 z®, +(Dn+l(0)¢’:>
<qu—1 f; Z(Dn+m—1 + (Dn+in (O)(D:&mf] > ot <Zf7 Zq)n+m—1 + (Dn+m(0)q):+m,1 >
{gm-1 S Pu) @) Ay
- : B D e =y,
Kn** Kntm—1

Cm [y @uim-1) - 3 Ppym—1)
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where 9, denotes the sum of the remaining 2" — 1 determinants. Each one of them
has at least one column of the form

n+l( )<quf,(1)*

m < quf.> (I):;mel >

(go = 1). Those columns not of this form are as

{arf, Qn?
, k=0,....m—1
e S Cunim-1>
Fori=1,...,m,and k=0, ...,m — 1, we have that

‘ n+l( )<quf q)n+z l>| ‘(I)HH( )<Z(Qkf Sknti- 2) q):+i71>|v

where S ,4i—» denotes the n 4 i — 2 Fourier sum of g, f. Notice that

{Z8nti-2, @y =0

because zS,,;;_» is a polynomial of degree at most n + i — 1 with a zero of multiplicity
>1 at z=0 and @, , is orthogonal to all such polynomials. Therefore, using
Lemma 1, (1), and the Holder inequality, it follows that

a1
fim sup. [@(0) Czqx /@y 311" < i sup [|gsf = Surially" <

n

Hence, the expansion of any one of the 2" — 1 determinants included in the sum §,, is
made of m! terms each one of which has one factor with nth root of order smaller
than 1/R;,0<k<m — 1, and for each i#k,0<i<m — 1, a factor with nth root of
order at most 1/R;. Therefore,

lim sup 5,1/”< 1/Ro- Ry = .
n

Taking account of (15), we have proved that

lim sup |An+1,m(zf) - An,m(f)|1/n <1n77 (26)

from which (24) and (25) follow.
According to a result of Hadamard in [6], any sequence of complex numbers {d, }
such that

limsup [d," =1, Tlimsup |dy1d, —d2]'/" <1
n n
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has the regular limit

lim |d,,|'/" = 1.
n

For a proof due to Ostrowski see Lemma 2, p. 330 in [3]. In fact the stronger
statement

lim 2 =5 (8] =1,

is deduced.

By definition we have that lim sup,|A,1,(f )|1/ " =1, and by assumption /,, #0.
On the other hand, we have (25). According to what was said above applied to the
sequence {d, = A,m/ln}, these conditions imply the regular limit

A (/)" = b (27)

Therefore, we have that A, ,,( f)#0 for all sufficiently large n, and Q, ,, can be taken
as a monic polynomial of exact degree m for all large n as we set out to prove.

In the sequel, all the determinants A, ,, refer to the function f/ and we drop the
explicit reference to it. Using the system of Egs. (21) with a,¢ = 1, by Cramer’s rule

eni = Ay o/ Dasimyi=1,...,m, where Al is the determinant obtained sub-
stituting the i-th column of A, ,, by the column vector

<me7 (Pn+l >

< mev gDner >

Therefore,
i i i i
c c A11-4—2,}71 ArH—lA,m An+2,mA”+l~,m - AnJrZJ‘HAn+1,m
n+1,i — Cnji = - - .
AnJrZ,m An+l,m A}'t+2,mAn+l,m

Let Hy41m+1 be the matrix defining the determinant A, 1. Fix ie {1, ..., m}. Let

Affll be the determinant of the matrix of order m — 1 obtained from Hyyi 41
eliminating its first and last rows and its first and i + 1 columns. Applying Sylvester’s
Theorem to H, 1 m+1, it is easy to check that

A11+1J71+1A;(«,13q = (_1)n7+1 (A;iq+2"mAn+1,Wl - A’1+2=mA£l+1,i7z) .
Consequently,

An 1.m IA,(,,i)
Cnri — Cng = (—1)"" ﬁ (28)
n+2mBn+1m

Reasoning as before with the polynomials ¢;, it is not difficult to show that

limsup [AY """ <1/Ry-+ Rpyn = L. (29)

n+1
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On account of (27)—29), we find that

lim supn‘AnJrlA,erl | l/nlim Sup, |A<l) l/i’l

1 1/n n+1 2
lim sup |Cn+l,i - Cn,i| < - ny: n <lm+1lm,1/lm <l1.
" lim, |An+2,m| lim,, ‘Al1+1,n1|
Therefore, >, |cut1,; — ¢ny] is convergent. Let lim, ¢,; = ¢;,i = 1, ...,m, and
-1
0z)=2"+c1Z" "+ - + -

Then

. 1/n 2
lim sup |¢,; — ¢ / <1l /15, <1
n

and, consequently,
lim sup ||Qum(z) — Q@) <lps i1l /< 1.

With this we conclude the proof of Theorem 1. [

4. Proof of the Corollaries

Proof of Corollary 1. Since c€S we have that S-1is analytic in D and
1 — 1 - :
(*S70,> = o / 8,1 ()9, G)IS0 ()P0 = 5 / 0,005, do, z=e".
21 r 2n r

Thus,

T~ L [2.(2)S:(2) (@uS2)" L= ks s
o _ n _ (@, SN ) (0) §k—)
<Z Sril7q0n> - 27_” /l; Zk+1 dZ - k' (O) - k' po (3) (0” (O)Sa (0)

and
1 & ©) 7o <h—9)
<ZkS;1a(Pn> % Efo (?)Q’ny (0)Ss7(0).

Notice that the coefficients on the right-hand side do not depend on n. From this it is
easy to reduce A, ,, to the following expression:
Sz(0)

A”””:(m—1)!(m—2)1---1!A”””’ (30)

where A, ,,, denotes the complex conjugate of the determinant given in (2). Since

Ss(0)#0 and m is fixed, it is obvious that /[, = [, and the statement follows
immediately. [

Proof of Corollary 2. The assumptions on the reflection coefficients imply that
®,(0)#0 for all sufficiently large n. For simplicity in the deduction of some
formulas, we will assume that @,(0) 0 for all n. It is easy to see that this causes no
restriction in the validity of the general result.
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Let us begin showing by induction on k that, for each neN,

ok (0
OO _ 40 4 4040y 0]t AW a4 (B (31)
(Dn-H (0)

where A(()k), ey A,(ck) are constants independent of n, A;Ck) #0, and

1/n
lim sup (max |e§k>|) <.
n j=zn

To this end, we make use of the three-term recurrence relation satisfied by the monic
orthogonal polynomials on the unit circle

By1(2) = (24 )0 = (1 = 0, 0F) TPz, 12, w20, (32)

(®_;(z) =0). For a proof of this formula see Lemma 2 in [1] or 8.3 in [5]. Taking
derivatives in (32) it is easy to deduce (by induction) that

0 2) = =+ S o) - 201 - o, 0)F) Sr P ol o)

[0l e - (- o 0R 2ol V)

nzk, k=1 (33)
Set z =0 in (33) and divide by ®,;(0). It follows that

o®,0) o)  [ok @) ofDo) oo
(Dnil(o) B (D,,,(O) =k (Dn-H(O) - (D”(O) + (Dn(O) |(I)n(0)| ‘|

Substituting in this expression n by j and adding the corresponding formulas for
Jj =k up to n, we obtain

o (0) o (0) Do) Vo) n 1>(0)
8,10 D0 :"< 000 00) )*"Z ~o0 %O

Since @\ (0) /@4 (0) = k@,ﬁ"j‘)( 0)/®(0) it follows that
0,4(0) _ o ki j1><o>

2
®,41(0) D, 1 ( / OF- (34)

(In the general case, when CI),,(O) #0 for n=ng, one obtains a formula equal to (34)

o) o 3<0>>

except for an extra constant term on the right hand of the form (m — k5.

which causes no problem in the rest of the proof.)
Let us verify (31) for k£ = 0. In fact, using the assumptions of the Corollary, we
have that
®,(0) 1 le,— €

_l la—an 35
©,11(0) a ac+en (33)
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and the formula holds with A(()O) =land D = S +(‘”*‘ Assume that (31) holds for the

index k — 1,k>1, and let us prove that it is also verified for the index k.
Using the induction hypothesis, we substitute (31), for the index k — 1, into (34).
We have

DO g o) N 40D S| 2
L:k AA_ ali1+k6 —1 +k A<_ al](I)» O
Dpg(@) K 2 A TR D AT D a9 0)
+k Z @ ). (36)
J=k—1
Set Sp = kS % (k_l)(I). 0 2 Th
et So =kY 016 |®11(0)]"<co. Then
g Z I O)F = So = kY ¢ VIR (O)F = So + 6, (37)
j=n
where
I}}}% |e 0|< max kz |ek n ||®;+1(0 )|
j=m
(k—
<k rnl;lgff %ax |€ |;1 |D;11(0 | <kc max |ek 1)|
and ¢o = Zj>0|q)j+l(0)|2< oo. Therefore,
1/n
limsup(mgx |e£rlf>0|> <. (38)
n m=n )

On the other hand, |®;;,(0)]* = |a*""™(|c|* + ¢11.1) and 611 = 2R(@¢j11) + |61
also satisfies

1/n
lim sup ( max |¢ 1| <0.
n mz=n ’

For each ie{0, ...,k — 1} fixed

= 2 s X ey 2 EX | iy
S Py OF =lea? S P 1P S PV,
et it =1
| ‘ 1+1 (k 1 | | 1+1)n
= |cal® T
s & 0
+lal* 7 fa Ve, (39)

ok
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Set Si1 = ka4

k-1 |a\ C/+1 1< o0. Then

n—1
KlaPASD ST jaP T e = i — kAR ST P g,

j=k—1 j=zn
= Sip1 + ), (40)
where

maX |€m 41

2 k—1 2(i+1)j
|< ka4 max >~ JaP g 4]

< KlaPAY (01 ) 3 Ja®

j=m
< Klaf |4 e max e |
m=n !
and ¢i1 =35 la*""V < o0 Therefore,
1/n
hmnsup (max| z+l> <0. (41)

Putting together (36)—(41) it follows that

(Dk
@,(0

AP o™+ &b,

M»

Il
<)

where

1/n
lim sup (mdx c;k)) <9,

n jzn

and /f}(k) = —kA,({I:l)|c\2|a\72(k71>(l — |a)*)7" 0. This is (31) for the index k except
that we need @, (0) in the denominator in place of ®,(0). This is easy to arrange on
account of (35). With this we conclude the proof of (31). Now, it readily follows that

(an (0) k k)| \2in k
=> B ok 42
at =0 o (42)
where B(()k>7 ...,B,((k> are constants independent of n, B,((k) = cA,((k> #0, and

lim sup [0]"/" <. (43)
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Fix ke{l,...,m}. Substituting (42) in the determinant A, x defined in Corollary 1
and using elementary properties of the determinant, we have

oY) o (0) D,(0)
p o o
X ®(0) @7 (0) ®,.1(0)
A nonkl k-1
— an+1 an+l anJrl aa eedd
K Knt+k—1 : . . .
k-1 k-2
(D;(ka)l (0) (DEka)l (0) Dyy1-1(0)
Q=1 g1 e gntk=1

k-1
k-1
_ Vl l B n 411 | | (/c—l)l1a(n+T)k + 8,
i=0

k—
V<HA )' [P g Tk s, (44)

i=0

where V' denotes the Vandermonde determinant relative to the points 1, |a|2,
|a|2(k71> and 6, denotes the sum of 25 — 1 determinants each one of which has

at least one column of the form (5,@,. ,5;3,{ 1) ,j=0,...,k— 1. Therefore, on
account of (43),

lim sup |3,|"" <o <|a" <|al*". (45)

Hence
~ . ~ 2
e = lim A" = |l

According to Corollary 1, for each k€{0, ...,m — 1} we have that

1k/1k+1 ‘a‘ 2k+1).

From this it follows that S, ! has exactly m — 1 simple poles which are located on the

circles of radii |a|7(2k+1>,k =0,...,m— 2, respectively, and has a singularity on the

@m=1) 1n order to obtain their exact value we use

circle of radius equal to |a|”
Theorem 3.

We proceed as follows. By Theorem 3, for each ke{l,...,m — 1} the sequence
{Oni},neN, of the denominator polynomials of the Fourier-Padé approximants
relative to S, ! converges to the polynomial Qx whose zeros are the poles of S
inside Dy. This is so because in each of the disks Dy this function has exactly k poles.

It follows that Qx(0)/Qk-1(0), (Qo = 1,) is equal to the pole which S;! has on the

circle of radius ||~ Let us calculate 0y (0).
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From the definition of R, it follows immediately that

-k k=1 1
0uu(2) = el S o) TS o) o)
Ani1 k(S5 : : . :
S op> STy (ST enu
Therefore,
0u(0) = (~1) Ar1xl2Se )

A,1+1,k(S;l) .
Using (26), we obtain
Ank(Sil) + Sn
. O = —1 ké’
[0) ,k( ) ( An+1,k(S;1)

where

lim sup |5,/ <l = = |a|*. (47)
n

From (30) and (44)—(47), it follows that
nk(k_l)a(w%)k 140,

KnKnpk—1 |d
(0) = (—1 k n+ s
0ni(0) = (=1) i T4 0,5

Knil " Knik |a|("+1)k(/€—1)

g

where lim, J,; = lim, J,» = 0. Cancelling out equal powers of |a| and a and taking
limit using (12), we obtain that

1
01(0) = (—1) W

ak
Therefore,

1
Qk(o)/Qk—l(O):de, k:1,...,m—1,

la

as we needed to prove. [
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