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Abstract

Using a convergence theorem for Fourier–Padé approximants constructed from orthogonal

polynomials on the unit circle, we prove an analogue of Hadamard’s theorem for determining

the radius of m-meromorphy of a function analytic on the unit disk and apply this to the

location of poles of the reciprocal of Szeg +o functions.
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1. Introduction

Let s be a finite positive Borel measure whose support suppðsÞ is contained in
G ¼ fz : jzj ¼ 1g and jnðzÞ ¼ knzn þ?APn; kn40; the orthonormal polynomial of
degree n with respect to s: It is said that s satisfies Szeg +o’s condition, and denote it
sAS; if

Z
G
log s0ðzÞjdzj4
N;
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where s0 denotes the Radon–Nikodym derivative of s with respect to the arc length
on G: The associated (interior) Szeg +o function is given by

SsðzÞ ¼ exp
1

4p

Z
G

zþ z

z
 z
log s0ðzÞjdzj

� �
; jzjo1:

We denote by #S the class of all finite positive Borel measures on G such that

lim sup
n

jjnð0Þj
1=n ¼ 1=rðsÞo1: ð1Þ

It is well-known (see (2.1), (2.5), Theorems 6.2 and 7.4 in [5]) that this class
is made up of all measures satisfying Szeg +o’s condition such that the largest

disk with center at z ¼ 0 to which S
1
s can be extended analytically has

radius rðsÞ41: Moreover, s is absolutely continuous with respect to the

Lebesgue measure and dsðzÞ ¼ jSsðzÞj2 dy; z ¼ eiy: For these and other character-
izations of this class of measures see also Theorem 1 and its Corollary
in [10].

Let D ¼ fz : jzjo1g and fAHð %DÞ; that is, f is analytic in a neighborhood of the
closed unit disk. We define the following determinants:

Dn;m ¼
/zm
1f ;jnS /zm
2f ;jnS ? /f ;jnS

^ ^ & ^

/zm
1f ;jnþm
1S /zm
2f ;jnþm
1S ? /f ;jnþm
1S

�������
�������; ð2Þ

where /�; �S denotes the usual inner product in the Hilbert space L2ðsÞ: Set

lm ¼ lmð f Þ ¼ lim sup
n

jDn;mj1=n; l0 ¼ 1: ð3Þ

It is not difficult to verify that lmp1 for all mAZþ (see Lemma 1 below). For

fAHð %DÞ; by Dmð f Þ ¼ fz : jzjoRmð f Þg we denote the largest disk centered at z ¼ 0
to which f can be extended to a meromorphic function with at most m poles. We
write Dm or Rm when it is clear to which function the notation refers. Here and in the
following, poles are counted according to their multiplicities.

Our main result is

Theorem 1. Let sA #S and fAHð %DÞ: Then for all mAZþ; we have

Rm ¼ lm

lmþ1
; ð4Þ

where by convention 0=0 ¼ N:

Theorem 1 is an analogue of Hadamard’s celebrated result for determining the
radius of m-meromorphy of an analytic function in terms of its Taylor coefficients.
For a proof of Hadamard’s Theorem see [6] or [3].
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Theorem 2 (Hadamard [6]). Let gðzÞ ¼
P

N

n¼0gnzn be an analytic function on some

neighborhood of z ¼ 0: Then, for each mX0 we have

RmðgÞ ¼
l̂m

l̂mþ1

;

where l̂0 ¼ 1 and l̂m ¼ lim supnjHn;mj1=n;

Hn;m ¼

gn
mþ1 gn
mþ2 ? gn

gn
mþ2 gn
mþ3 ? gnþ1

^ ^ & ^

gn gnþ1 ? gnþm
1

���������

���������
; mAN; nXm 
 1; ð5Þ

(here, as in (4), by convention 0=0 ¼ N).

The proof of Theorem 2 relies on the behavior of row sequences of Padé
approximants. Let us consider the analogous construction for general Fourier
expansions in terms of the orthogonal polynomials with respect to s:

Let n;m be two fixed non-negative integers. Then, there exist polynomials Qn;m

and Pn;m such that

(i) deg Pn;mpn; deg Qn;mpm; Qn;mc0;
(ii) ðQn;m f 
 Pn;mÞðzÞ ¼ An;1jnþmþ1 þ An;2jnþmþ2 þ?:

The quotient Rn;m ¼ Pn;m=Qn;m of any solution of the system above is called an

ðn;mÞ Fourier–Padé approximant of f (relative to the measure s). Given ðn;mÞ;more
than one rational function may be defined (even after cancelling out common
factors). If all solutions of the system above satisfy that deg Qn;m ¼ m; then Rn;m is

uniquely determined (see [14]). Since by construction Qn;mc0; we will normalize it

with leading coefficient equal to 1:
Let s be a measure on G such that

lim
n

Fnð0Þ ¼ 0; ð6Þ

where Fn ¼ jn=kn denotes the monic polynomial of degree n orthogonal with respect
to s: In this case, we write sAN0: It is well-known (see [11] and the references
therein) that s040 a. e. on G is sufficient for (6) to take place. The proof of Theorem
1 is based on the following result.

Theorem 3. Let sAN0 and fAHð %DÞ: Then the following statements are equivalent:

(a) f has exactly m poles fz1; z2;y; zmg in Dm;
(b) there exists a polynomial QmðzÞ ¼

Qm
k¼1ðz 
 zkÞ such that

lim sup
n

jjQn;m 
 Qmjj1=n ¼ qo1; ð7Þ
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where jj � jj denotes the usual norm in the space of polynomial coefficients. If either (a)
or (b) takes place, then

Rm ¼ max
1pkpm

jzkj=q ð8Þ

and

lim sup
n

jj f 
 Rn;mjj1=n
K pmax

zAK
jzj=Rm; ð9Þ

where K denotes an arbitrary compact subset of Dm\fz1;y; zmg and jj � jjK denotes

the sup-norm on K:

This theorem is basically due to Suetin. For Fourier–Padé approximants with
respect to measures supported on the real line, he proves in [13] that (a) implies (b),
(9), and that Rmpmax1pkpm jzkj=q: He also states without proof the corresponding
result for Fourier–Padé approximants relative to a measure supported on an arc of
the complex plane whose orthogonal polynomials have Szeg +o type strong asymptotic
behavior. In the theory of Padé approximants such results are called of direct type

and follow the structure of de Montessus de Ballore’s Theorem [9]. In [14], for
measures supported on the real line, Suetin proves that (b) implies (a) and
RmXmax1pkpm jzkj=q: These are inverse type results. In [14], other types of Fourier
expansions are not mentioned. The proof for measures on the unit circle (of the
direct and inverse statements) is essentially the same as the one given by Suetin for
the case of the real line, so we omit it. In Section 2, some auxiliary lemmas are given.
Theorem 1 is proved in Section 3.

Because of the analytic properties of S
1
s when sA #S; we can apply Theorem 1 to

f ¼ S
1
s in order to obtain the distribution of poles of this function along circles

centered at the origin. We get

RmðS
1
s Þ ¼ lmðS
1

s Þ=lmþ1ðS
1
s Þ; mAZþ: ð10Þ

Since (see (2.1), (2.5), and (2.10) in [5])

S
1
s ðzÞ ¼ 1

k

XN
n¼0

jnð0ÞjnðzÞ;

where

k ¼ exp

1

4p

Z
G
log s0ðzÞjdzj

� �

by analogy with Hadamard’s Theorem one is tempted to replace lmðS
1
s Þ by

lim supnjH̃n;mj1=n in formula (10) with

H̃n;m ¼
jn
mþ1ð0Þ jn
mþ2ð0Þ ? jnð0Þ

^ ^ & ^

jnð0Þ jnþ1ð0Þ ? jnþm
1ð0Þ

�������
�������
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as was conjectured by one of the authors in [8]. In this form the formula is not
correct as the following example shows.

Let s be the measure whose reflection coefficients are given by Fnð0Þ ¼ an where
0ojajo1: In p. 180 of [2] it was shown that the corresponding Szeg +o function has a

simple pole at 1= %a (thus R0 ¼ 1=jaj) and limn jjQn;1ðzÞ 
 ðz 
 1= %aÞjj ¼ jaj2: According

to Theorem 3, we have that R1ðS
1
s Þ ¼ 1=jaj3: On the other hand, it is obvious that

H̃n;2 ¼ 0 and we would get the wrong formula for R1ðS
1
s Þ:

Nevertheless, using (10) it is possible to prove the following formula:

Corollary 1. Let sA #S: Set

*Dn;m ¼

jðm
1Þ
n ð0Þ jðm
2Þ

n ð0Þ ? jnð0Þ
jðm
1Þ

nþ1 ð0Þ jðm
2Þ
nþ1 ð0Þ ? jnþ1ð0Þ

^ ^ & ^

jðm
1Þ
nþm
1ð0Þ jðm
2Þ

nþm
1ð0Þ ? jnþm
1ð0Þ

����������

����������
and

l̃m ¼ lim sup
n

j *Dn;mj1=n; l̃0 ¼ 1:

Then, l̃m ¼ lm and

Rm ¼ l̃m

l̃mþ1

; mAZþ:

Corollary 2. Let Fnð0Þ ¼ anðc þ enÞ; nAN; be a sequence of reflection coefficients,

where ca0 and lim supnðmaxjXn jejjÞ1=n ¼ dojajm
2

;mX1: Let s denote the associated

measure on the unit circle. Then,

Rm
1ðS
1
s Þ ¼ 1

jaj2m
1

and S
1
s has exactly m 
 1 simple poles in Dm
1 located at the points 1= %ajaj2ðk
1Þ; k ¼

1; 2;y;m 
 1:

Corollary 3. Under the same assumptions as in the previous corollary, if d ¼ 0; then

S
1
s is a meromorphic function in the complex plane with simple poles located at the

points 1= %ajaj2ðk
1Þ; kAN:

When Fnð0Þ ¼ an; nAZþ an explicit expressions in the form of an infinite product
for the Szeg +o function was obtained by Szeg +o (see [15]). In particular, it was known
that the Szeg +o function is analytic in the whole complex plane with simple zeros
precisely at each of the points indicated in Corollary 3.
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Some special cases to which Corollaries 2 and 3, respectively, may be applied are:

(1) Fnð0Þ ¼ can þ pðbnÞ; where ca0; p is a polynomial, and jbjojajm
2

for a given
mAZþ:

(2) Fnð0Þ ¼ can þ pðð1=nÞnÞ; where ca0 and p is a polynomial.

(It is assumed in these examples that c and p are such that the necessary condition
for the existence of an orthogonality measure jFnð0Þjo1; nAN; is satisfied.)

The proof of the corollaries is carried out in Section 4.

2. Lemmas and auxiliary results

Let jnðzÞ ¼ knFnðzÞ; kn40; be the nth orthonormal polynomial with respect to
sAN0 and

gnðzÞ ¼
Z

jnðzÞ
z 
 z

dsðzÞ

the associated function of second type. Using that

Fnþ1ðzÞ ¼ zFnðzÞ þ Fnþ1ð0ÞF�
nðzÞ; ð11Þ

where F�
nðzÞ ¼ znFnð1=%zÞ is the so-called nth reversed polynomial, and

1
 ðkn=knþ1Þ2 ¼ jFnþ1ð0Þj2

(see e.g. formulas (1.2) and (1.5) in [5]), it is easy to verify that (6) is equivalent to
each one of the following relations

lim
n

knþ1

kn

¼ 1 ð12Þ

and

lim
n

jnþ1ðzÞ
jnðzÞ

¼ z ð13Þ

uniformly in fz : jzjX1g: On the other hand (see Theorems 4 and 7.4 in [7]),

condition (6) implies that jjnj
2
ds converges in the weak-star topology of measures to

the unit Lebesgue measure on G: Since from orthogonality

ðgnjnÞðzÞ ¼
Z jjnðzÞj

2

z 
 z
dsðzÞ;

using (13) and the weak-star convergence, it follows that

lim
n

gnþ1

gn

¼ 1

z
; ð14Þ

uniformly on compact subsets of fz : jzj41g:
Properties (12)–(14) are all that it is needed from the measure in order to prove

Theorem 3 following the scheme employed by Suetin in [13,14] in proving the
analogous result for measures supported on the real line.
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For most parts of the proof of Theorem 1, it is only required that

lim
n

k1=n
n ¼ 1 ð15Þ

and

lim
n

jjnðzÞj
1=n ¼ jzj; jzjX1; ð16Þ

where convergence is uniform on compact subsets of fz : jzjX1g: These properties
immediately follow from (6) on account of (12) and (13), respectively. In proving

Theorem 1 we are forced to restrict the class of measures to sA #S because at one
point we need (1) to derive estimate (25) below. Either (15) or (16) characterizes the
set of all measures with suppðsÞ ¼ G belonging to the class Reg of regular measures
(for details about this class of measures see Theorem 3.1.1 in [12]).

The following lemma is obtained using (16) in the same way as similar statements
are proved for Taylor series. The only delicate point is to ensure that the sum of the
series is f ; but this is guaranteed because

jj f 
 Snjj22pjj f 
 Tnjj22psðGÞjj f 
 Tnjj2N;

where Sn and Tn denote the nth Fourier and Taylor partial sums whereas jj � jj2 and
jj � jj

N
denote the L2ðsÞ and the uniform norms, respectively. Since fAHð %DÞ; it

follows that

lim
n

jj f 
 Snjj2 ¼ 0

and by the principle of analytic continuation f and the sum of the Fourier series
coincide. For details see Theorems 6.2 and 7.4 in [5]. This lemma will serve as the
induction basis for the proof of Theorem 1.

Lemma 1. Let suppðsÞ ¼ G; sAReg; and fAHð %DÞ: Then,

f ðzÞ ¼
X
nX0

/f ;jnSjnðzÞ; ð17Þ

uniformly on each compact subset of D0; where

/f ;jnS ¼
Z

f ðzÞjnðzÞ dsðzÞ:

For each z such that jzj4R0 the series in (17) diverges. Moreover,

l1 ¼ lim sup
n

j/f ;jnSj1=n ¼ lim sup
n

j/f ;FnSj1=n ¼ 1

R0
o1:

The following Lemma will also be quite useful in proving Theorem 1.

Lemma 2. Let suppðsÞ ¼ G; sAReg; and fAHð %DÞ: Then,

lmpðR0?Rm
1Þ
1o1; mAN ¼ f1; 2;yg:
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Proof. For each iAZþ; let i0 denote the number of poles which f has in Dið f Þ
(counting their order). Take qi as the monic polynomial of degree i which has a zero
at each pole of f in Dið f Þ and i 
 i0 zeros at z ¼ 0: Therefore, deg qi ¼ i and

R0ðqi f Þ ¼ Rið f Þ:

Because of Lemma 1, it follows that

lim sup
n

j/qi f ;jnSj1=n ¼ 1=R0ðqi f Þ ¼ 1=Rið f Þ: ð18Þ

Fix mAN: Consider the determinant Dn;m defined in (2). Adding to the first column

an appropriate linear combination of the rest of the columns, from the properties of
the determinants, we obtain

Dn;m ¼

/qm
1 f ;jnS /zm
2f ;jnS ? /f ;jnS

/qm
1 f ;jnþ1S /zm
2f ;jnþ1S ? /f ;jnþ1S

^ ^ & ^

/qm
1 f ;jnþm
1S /zm
2f ;jnþm
1S ? /f ;jnþm
1S

���������

���������
:

Proceeding analogously from the second column on, it follows that

Dn;m ¼

/qm
1 f ;jnS /qm
2 f ;jnS ? /f ;jnS

/qm
1 f ;jnþ1S /qm
2 f ;jnþ1S ? /f ;jnþ1S

^ ^ & ^

/qm
1 f ;jnþm
1S /qm
2 f ;jnþm
1S ? /f ;jnþm
1S

���������

���������
:

Expanding this determinant, we obtain a sum of m! terms each one of which has
exactly one factor representing each column. According to (18), it follows that
the nth root of each one of these terms has lim sup not greater than

ðR0ð f Þ?Rm
1ð f ÞÞ
1: Since the number of terms in the expansion of the
determinants remains fixed with n; the statement of the lemma follows. &

3. Proof of Theorem 1

The proof of this theorem is carried out by induction on mAZþ: By definition
l0 ¼ 1; therefore, for m ¼ 0 formula (4) follows from Lemma 1. Fix mX1 and
suppose that (4) holds for all indices up to m 
 1: Let us prove that it is also
true for m:

From Lemma 2, we have that lip1 for all iAZþ: If Rm ¼ N; according to Lemma
2 we have that lmþ1 ¼ 0: Hence, Rm ¼ lm=lmþ1 as needed (recall that by convention
0=0 ¼ N). Therefore, we can assume that RmoN: Consequently, RioN for i ¼
0; 1;y;m: By the hypothesis of induction, we have that Ri ¼ li=liþ1; i ¼ 0; 1;y;m 

1; therefore, li40; i ¼ 0;y;m: Multiplying these equalities, we obtain that
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R0?Rm
1 ¼ 1=lmoN: Using again Lemma 2 (for the index m þ 1), we get

lm=lmþ1XR0?Rm=R0?Rm
1 ¼ Rm:

Now, it rests to show that RmXlm=lmþ1:
Notice that

lm
1=lm ¼ Rm
1pRmplm=lmþ1:

If lm
1=lm ¼ lm=lmþ1; we would have equality throughout and, in particular, Rm ¼
lm=lmþ1 as needed. Hence, it is sufficient to consider the case when RmoN;Ri ¼
li=liþ1; i ¼ 0;y;m 
 1; and lm
1=lmolm=lmþ1; or what is the same

lm
1lmþ1=l2mo1: ð19Þ

Our next goal is to prove that under these conditions there exists a polynomial Qm of
exact degree m such that

lim sup
n

jjQn;m 
 Qmjj1=nplm
1lmþ1=l2mo1: ð20Þ

Suppose this has been proved. Then, according to (7) and (8) in Theorem 3, we have
that

max
1pkpm

jzkj=Rmplm
1lmþ1=l2m

and f has exactly m poles in Dm at the zeros z1;y; zm of the polynomial Qm: This
implies that Rm
1 ¼ max1pkpmjzkj: Consequently,

Rm
1=Rmplm
1lmþ1=l2m ¼ Rm
1lmþ1=lm:

Cancelling out Rm
1 on both sides of this inequality, we get

RmXlm=lmþ1;

and we are done. Therefore, to conclude the proof of Theorem 1, we must
show that under the induction hypothesis (20) holds if (19) takes place and
RmoN:

First, let us prove that Qn;m is of degree m for all sufficiently large n: Set Qn;mðzÞ ¼
cn;0z

m þ cn;1z
m
1 þ?þ cn;m: By definition, /Qn;m f ;jnþkS ¼ 0 for k ¼ 1;y;m:

This is equivalent to


 cn;0/zmf ;jnþkS ¼ cn;1/zm
1f ;jnþkSþ?þ cn;m/f ;jnþkS;

k ¼ 1;y;m: ð21Þ

The determinant of this system is Dnþ1;m: If we can show that Dnþ1;ma0 for all

sufficiently large n; then we can guarantee the existence of a unique solution on the
coefficients cn;1;y; cn;m of the non-homogeneous system which is obtained above

taking cn;0 ¼ 1:
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In the sequel, we write Dn;mðgÞ and lmðgÞ to specify that the notation is relative to

some function g: In particular,

Dn;mðzf Þ ¼
/zmf ;jnS ? /zf ;jnS

^ & ^

/zmf ;jnþm
1S ? /zf ;jnþm
1S

�������
�������:

By Sylvester’s determinant identity (see (30) p. 33 in [4]), we have

Dnþ1;mþ1ð f ÞDnþ2;m
1ðzf Þ ¼ Dnþ1;mðzf ÞDnþ2;mð f Þ 
 Dnþ2;mðzf ÞDnþ1;mð f Þ: ð22Þ

From Lemma 2 applied to zf and the induction hypothesis, we have that

lim sup
n

jDnþ1;mþ1ð f ÞDnþ2;m
1ðzf Þj1=n

plmþ1ð f Þlm
1ðzf Þp lmþ1ð f Þ
R0ðzf Þ?Rm
2ðzf Þ

¼ lmþ1ð f Þ
R0ð f Þ?Rm
2ð f Þ ¼ lmþ1ð f Þlm
1ð f Þol2mð f Þ: ð23Þ

Now, let us show that

Dnþ1;mðzf ÞDnþ2;mð f Þ 
 Dnþ2;mðzf ÞDnþ1;mð f Þ

¼ Dn;mð f ÞDnþ2;mð f Þ 
 D2
nþ1;mð f Þ þ En; ð24Þ

where lim supn jEnj1=nol2mð f Þ: Having proved this, using (22)–(24), we obtain

lim sup
n

jDn;mð f ÞDnþ2;mð f Þ 
 D2
nþ1;mð f Þj1=nol2mð f Þ: ð25Þ

Let us compare the determinants Dnþ1;mðzf Þ and Dn;mð f Þ: Let qi be the polynomials

introduced in the proof of Lemma 2. Notice that R0ðzqi f Þ ¼ R0ðqi f Þ ¼ Rið f Þ:
Proceeding as in the proof of Lemma 2, using (11) and the distributive law for
determinants, we have

Dnþ1;mðzf Þ
knþ1?knþm

¼
/zqm
1 f ; zFn þ Fnþ1ð0ÞF�

nS ? /zf ; zFn þ Fnþ1ð0ÞF�
nS

^ & ^

/zqm
1 f ; zFnþm
1 þ Fnþmð0ÞF�
nþm
1S ? /zf ; zFnþm
1 þ Fnþmð0ÞF�

nþm
1S

�������
�������

¼
/qm
1 f ;FnS ? /f ;FnS

^ & ^

/qm
1 f ;Fnþm
1S ? /f ;Fnþm
1S

�������
�������þ dn ¼ Dn;mð f Þ

kn?knþm
1
þ dn;
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where dn denotes the sum of the remaining 2m 
 1 determinants. Each one of them
has at least one column of the form

Fnþ1ð0Þ/zqk f ;F�
nS

^

Fnþmð0Þ/zqk f ;F�
nþm
1S

0
B@

1
CA; k ¼ 0;y;m 
 1;

ðq0 � 1Þ: Those columns not of this form are as

/qk f ;FnS

^

/qk f ;Fnþm
1S

0
B@

1
CA; k ¼ 0;y;m 
 1:

For i ¼ 1;y;m; and k ¼ 0;y;m 
 1; we have that

jFnþið0Þ/zqk f ;F�
nþi
1Sj ¼ jFnþið0Þ/zðqk f 
 Sk;nþi
2Þ;F�

nþi
1Sj;

where Sk;nþi
2 denotes the n þ i 
 2 Fourier sum of qk f : Notice that

/zSnþi
2;F�
nþi
1S ¼ 0

because zSnþi
2 is a polynomial of degree at most n þ i 
 1 with a zero of multiplicity
X1 at z ¼ 0 and F�

nþi
1 is orthogonal to all such polynomials. Therefore, using

Lemma 1, (1), and the Holder inequality, it follows that

lim sup
n

jFnþið0Þ/zqk f ;F�
nþi
1Sj1=no lim sup

n
jjqk f 
 Snþi
2jj1=n

2 p
1

Rk

:

Hence, the expansion of any one of the 2m 
 1 determinants included in the sum dn is
made of m! terms each one of which has one factor with nth root of order smaller
than 1=Rk; 0pkpm 
 1; and for each iak; 0pipm 
 1; a factor with nth root of
order at most 1=Ri: Therefore,

lim sup
n

d1=n
n o1=R0?Rm
1 ¼ lm:

Taking account of (15), we have proved that

lim sup
n

jDnþ1;mðzf Þ 
 Dn;mð f Þj1=nolm; ð26Þ

from which (24) and (25) follow.
According to a result of Hadamard in [6], any sequence of complex numbers fdng

such that

lim sup
n

jdnj1=n ¼ 1; lim sup
n

jdnþ1dn
1 
 d2
n j

1=no1
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has the regular limit

lim
n

jdnj1=n ¼ 1:

For a proof due to Ostrowski see Lemma 2, p. 330 in [3]. In fact the stronger
statement

lim
n

dnþ1

dn

¼ d; jdj ¼ 1;

is deduced.

By definition we have that lim supnjDnþ1;mð f Þj1=n ¼ lm and by assumption lma0:
On the other hand, we have (25). According to what was said above applied to the
sequence fdn ¼ Dn;m=lmg; these conditions imply the regular limit

lim
n

jDn;mð f Þj1=n ¼ lm: ð27Þ

Therefore, we have that Dn;mð f Þa0 for all sufficiently large n; and Qn;m can be taken

as a monic polynomial of exact degree m for all large n as we set out to prove.
In the sequel, all the determinants Dn;m refer to the function f and we drop the

explicit reference to it. Using the system of Eqs. (21) with an;0 ¼ 1; by Cramer’s rule

cn;i ¼ Di
nþ1;m=Dnþ1;m; i ¼ 1;y;m; where Di

nþ1;m is the determinant obtained sub-

stituting the i-th column of Dnþ1;m by the column vector



/zmf ;jnþ1S

^

/zmf ;jnþmS

0
B@

1
CA:

Therefore,

cnþ1;i 
 cn;i ¼
Di

nþ2;m

Dnþ2;m


Di

nþ1;m

Dnþ1;m
¼

Di
nþ2;mDnþ1;m 
 Dnþ2;mD

i
nþ1;m

Dnþ2;mDnþ1;m
:

Let Hnþ1;mþ1 be the matrix defining the determinant Dnþ1;mþ1: Fix iAf1;y;mg: Let
DðiÞ

nþ1 be the determinant of the matrix of order m 
 1 obtained from Hnþ1;mþ1

eliminating its first and last rows and its first and i þ 1 columns. Applying Sylvester’s
Theorem to Hnþ1;mþ1; it is easy to check that

Dnþ1;mþ1D
ðiÞ
nþ1 ¼ ð
1Þmþ1 Di

nþ2;mDnþ1;m 
 Dnþ2;mD
i
nþ1;m

� �
:

Consequently,

cnþ1;i 
 cn;i ¼ ð
1Þmþ1 Dnþ1;mþ1D
ðiÞ
nþ1

Dnþ2;mDnþ1;m
: ð28Þ

Reasoning as before with the polynomials qi; it is not difficult to show that

lim sup
n

jDðiÞ
nþ1j

1=np1=R0?Rm
2 ¼ lm
1: ð29Þ
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On account of (27)–(29), we find that

lim sup
n

jcnþ1;i 
 cn;ij1=np
lim supnjDnþ1;mþ1j1=nlim supn jD

ðiÞ
nþ1j

1=n

limn jDnþ2;mj1=nlimn jDnþ1;mj1=n
plmþ1lm
1=l2mo1:

Therefore,
P

n jcnþ1;i 
 cn;ij is convergent. Let limn cn;i ¼ ci; i ¼ 1;y;m; and

QðzÞ ¼ zm þ c1z
m
1 þ?þ cm:

Then

lim sup
n

jcn;i 
 cij1=nplmþ1lm
1=l2mo1

and, consequently,

lim sup
n

jjQn;mðzÞ 
 QðzÞjj1=nplmþ1lm
1=l2mo1:

With this we conclude the proof of Theorem 1. &

4. Proof of the Corollaries

Proof of Corollary 1. Since sA #S we have that S
1
s is analytic in %D and

/zkS
1
s ;jnS ¼ 1

2p

Z
G

zkS
1
s ðzÞjnðzÞjSsðzÞj2dy ¼ 1

2p

Z
G

zkjnðzÞSsðzÞ dy; z ¼ eiy:

Thus,

/zkS
1
s ;jnS ¼ 1

2pi

Z
G

jnðzÞSsðzÞ
zkþ1

dz ¼ ðjnSsÞðkÞ

k!
ð0Þ ¼ 1

k!

Xk

s¼0

k
s

� �
jðsÞ

n ð0ÞSðk
sÞ
s ð0Þ

and

/zkS
1
s ;jnS ¼ 1

k!

Xk

s¼0

k
s

� �
jðsÞ

n ð0ÞSðk
sÞ
s ð0Þ:

Notice that the coefficients on the right-hand side do not depend on n: From this it is
easy to reduce Dn;m to the following expression:

Dn;m ¼ Sm
s ð0Þ

ðm 
 1Þ!ðm 
 2Þ!?1!
*Dn;m; ð30Þ

where Dn;m denotes the complex conjugate of the determinant given in (2). Since

Ssð0Þa0 and m is fixed, it is obvious that lm ¼ l̃m and the statement follows
immediately. &

Proof of Corollary 2. The assumptions on the reflection coefficients imply that
Fnð0Þa0 for all sufficiently large n: For simplicity in the deduction of some
formulas, we will assume that Fnð0Þa0 for all n: It is easy to see that this causes no
restriction in the validity of the general result.
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Let us begin showing by induction on k that, for each nAN;

FðkÞ
n ð0Þ

Fnþ1ð0Þ
¼ A

ðkÞ
0 þ A

ðkÞ
1 jaj2n þ A

ðkÞ
2 jaj4n þ?þ A

ðkÞ
k jaj2kn þ EðkÞn ; ð31Þ

where A
ðkÞ
0 ;y;A

ðkÞ
k are constants independent of n; A

ðkÞ
k a0; and

lim sup
n

max
jXn

jEðkÞj j
� �1=n

pd:

To this end, we make use of the three-term recurrence relation satisfied by the monic
orthogonal polynomials on the unit circle

Fnþ1ðzÞ ¼ z þ Fnþ1ð0Þ
Fnð0Þ

� �
FnðzÞ 
 ð1
 jFnð0Þj2Þ

Fnþ1ð0Þ
Fnð0Þ

zFn
1ðzÞ; nX0: ð32Þ

ðF
1ðzÞ � 0Þ: For a proof of this formula see Lemma 2 in [1] or 8.3 in [5]. Taking
derivatives in (32) it is easy to deduce (by induction) that

FðkÞ
nþ1ðzÞ ¼ z þ Fnþ1ð0Þ

Fnð0Þ

� �
FðkÞ

n ðzÞ 
 zð1
 jFnð0Þj2Þ
Fnþ1ð0Þ
Fnð0Þ

FðkÞ
n
1ðzÞ

þ k Fðk
1Þ
n ðzÞ 
 ð1
 jFnð0Þj2Þ

Fnþ1ð0Þ
Fnð0Þ

Fðk
1Þ
n
1 ðzÞ

� �
;

nXk; kX1: ð33Þ
Set z ¼ 0 in (33) and divide by Fnþ1ð0Þ: It follows that

FðkÞ
nþ1ð0Þ

Fnþ1ð0Þ

 FðkÞ

n ð0Þ
Fnð0Þ

¼ k
Fðk
1Þ

n ð0Þ
Fnþ1ð0Þ


 Fðk
1Þ
n
1 ð0Þ
Fnð0Þ

þ Fðk
1Þ
n
1 ð0Þ
Fnð0Þ

jFnð0Þj2
" #

:

Substituting in this expression n by j and adding the corresponding formulas for
j ¼ k up to n; we obtain

FðkÞ
nþ1ð0Þ

Fnþ1ð0Þ

 FðkÞ

k ð0Þ
Fkð0Þ

¼ k
Fðk
1Þ

n ð0Þ
Fnþ1ð0Þ


 Fðk
1Þ
k
1 ð0Þ
Fkð0Þ

 !
þ k

Xn

j¼k

Fðk
1Þ
j
1 ð0Þ
Fjð0Þ

jFjð0Þj2:

Since FðkÞ
k ð0Þ=Fkð0Þ ¼ kFðk
1Þ

k
1 ð0Þ=Fkð0Þ it follows that

FðkÞ
nþ1ð0Þ

Fnþ1ð0Þ
¼ k

Fðk
1Þ
n ð0Þ
Fnþ1ð0Þ

þ k
Xn

j¼k

Fðk
1Þ
j
1 ð0Þ
Fjð0Þ

jFjð0Þj2: ð34Þ

(In the general case, when Fnð0Þa0 for nXn0; one obtains a formula equal to (34)

except for an extra constant term on the right hand of the form
FðkÞ

n0
ð0Þ

Fn0
ð0Þ 
 k

Fðk
1Þ
n0
1

ð0Þ
Fn0

ð0Þ

� �
which causes no problem in the rest of the proof.)

Let us verify (31) for k ¼ 0: In fact, using the assumptions of the Corollary, we
have that

Fnð0Þ
Fnþ1ð0Þ

¼ 1

a
þ 1

a

En 
 Enþ1

c þ Enþ1
ð35Þ
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and the formula holds with A
ð0Þ
0 ¼ 1

a
and Eð1Þn ¼ En
Enþ1

cþEnþ1
: Assume that (31) holds for the

index k 
 1; kX1; and let us prove that it is also verified for the index k:
Using the induction hypothesis, we substitute (31), for the index k 
 1; into (34).

We have

FðkÞ
nþ1ð0Þ

Fnþ1ð0Þ
¼ k

Xk
1

i¼0

A
ðk
1Þ
i jaj2in þ kEðk
1Þ

n þ k
Xk
1

i¼0

A
ðk
1Þ
i

Xn
1

j¼k
1

jaj2ij jFjþ1ð0Þj2

þ k
Xn
1

j¼k
1

Eðk
1Þ
j jFjþ1ð0Þj2: ð36Þ

Set S0 ¼ k
P

N

j¼k
1 E
ðk
1Þ
j jFjþ1ð0Þj2oN: Then

k
Xn
1

j¼k
1

Eðk
1Þ
j jFjþ1ð0Þj2 ¼ S0 
 k

X
jXn

Eðk
1Þ
j jFjþ1ð0Þj2 ¼ S0 þ EðkÞn;0 ; ð37Þ

where

max
mXn

jEðkÞm;0jp max
mXn

k
X
jXm

jEðk
1Þ
j jjFjþ1ð0Þj2

p k max
mXn

max
jXm

jEðk
1Þ
j j

X
jXm

jFjþ1ð0Þj2pkc0 max
mXn

jEðk
1Þ
m j

and c0 ¼
P

jX0jFjþ1ð0Þj2oN: Therefore,

lim sup
n

max
mXn

jEðkÞm;0j
� �1=n

pd: ð38Þ

On the other hand, jFjþ1ð0Þj2 ¼ jaj2ð jþ1Þðjcj2 þ Ejþ1;1Þ and Ejþ1;1 ¼ 2Rð%cEjþ1Þ þ jEjþ1j2
also satisfies

lim sup
n

max
mXn

jEm;1j
� �1=n

pd:

For each iAf0;y; k 
 1g fixed

Xn
1

j¼k
1

jaj2ijjFjþ1ð0Þj2 ¼ jcaj2
Xn
1

j¼k
1

jaj2ðiþ1Þj þ jaj2
Xn
1

j¼k
1

jaj2ðiþ1ÞjEjþ1;1

¼ jcaj2 jaj
2ðiþ1Þðk
1Þ 
 jaj2ðiþ1Þn

1
 jaj2ðiþ1Þ

þ jaj2
Xn
1

j¼k
1

jaj2ðiþ1ÞjEjþ1;1: ð39Þ
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Set Siþ1 ¼ kjaj2Aðk
1Þ
i

P
jXk
1 jaj

2ðiþ1ÞjEjþ1;1oN: Then

kjaj2Aðk
1Þ
i

Xn
1

j¼k
1

jaj2ðiþ1ÞjEjþ1;1 ¼Siþ1 
 kjaj2Aðk
1Þ
i

X
jXn

jaj2ðiþ1ÞjEjþ1;1

¼Siþ1 þ EðkÞn;iþ1; ð40Þ

where

max
mXn

jEðkÞm;iþ1jp kjaj2jAðk
1Þ
i jmax

mXn

X
jXm

jaj2ðiþ1ÞjjEjþ1;1j

p kjaj2jAðk
1Þ
i jmax

mXn
max
jXm

jEjþ1;1j
� �X

jXm

jaj2ðiþ1Þj

p kjaj2jAðk
1Þ
i jciþ1 max

mXn
jEmþ1;1j

and ciþ1 ¼
P

jX0 jaj
2ðiþ1ÞjoN: Therefore,

lim sup
n

max
jXn

jEðkÞj;iþ1j
� �1=n

pd: ð41Þ

Putting together (36)–(41) it follows that

FðkÞ
n ð0Þ
Fnð0Þ

¼
Xk

i¼0

Ã
ðkÞ
i jaj2in þ *EðkÞn ;

where

lim sup
n

max
jXn

*EðkÞj

� �1=n

pd;

and Ã
ðkÞ
k ¼ 
kA

ðk
1Þ
k
1 jcj2jaj
2ðk
1Þð1
 jaj2kÞ
1a0: This is (31) for the index k except

that we need Fnþ1ð0Þ in the denominator in place of Fnð0Þ: This is easy to arrange on
account of (35). With this we conclude the proof of (31). Now, it readily follows that

FðkÞ
n ð0Þ
an

¼
Xk

i¼0

B
ðkÞ
i jaj2in þ dðkÞn ; ð42Þ

where B
ðkÞ
0 ;y;B

ðkÞ
k are constants independent of n; B

ðkÞ
k ¼ cA

ðkÞ
k a0; and

lim sup
n

jdðkÞn j1=npd: ð43Þ
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Fix kAf1;y;mg: Substituting (42) in the determinant *Dn;k defined in Corollary 1

and using elementary properties of the determinant, we have

*Dn;k

knyknþk
1
¼

Fðk
1Þ
n ð0Þ

an

Fðk
2Þ
n ð0Þ

an
y

Fnð0Þ
an

Fðk
1Þ
nþ1 ð0Þ
anþ1

Fðk
2Þ
nþ1 ð0Þ
anþ1

y
Fnþ1ð0Þ

anþ1

^ ^ & ^

Fðk
1Þ
nþk
1ð0Þ
anþk
1

Fðk
2Þ
nþk
1ð0Þ
anþk
1

y
Fnþk
1ð0Þ

anþk
1

����������������

����������������

ananþ1?anþk
1

¼V
Yk
1

i¼0

B
ðiÞ
i jaj2njaj4n

yjaj2ðk
1Þn
aðnþk
1

2
Þk þ dn

¼V
Yk
1

i¼0

A
ðiÞ
i

 !
jajnkðk
1Þ

aðnþk
1
2

Þk þ dn; ð44Þ

where V denotes the Vandermonde determinant relative to the points 1; jaj2;y;

jaj2ðk
1Þ and dn denotes the sum of 2k 
 1 determinants each one of which has

at least one column of the form ðdð jÞ
n ;y; dð jÞ

nþk
1Þ
t; j ¼ 0;y; k 
 1: Therefore, on

account of (43),

lim sup
n

jdnj1=npdojajm
2

pjajk
2

: ð45Þ

Hence

l̃k ¼ lim
n

j *Dn;kj1=n ¼ jajk
2

:

According to Corollary 1, for each kAf0;y;m 
 1g we have that

Rk ¼ l̃k=l̃kþ1 ¼ jaj
ð2kþ1Þ:

From this it follows that S
1
s has exactly m 
 1 simple poles which are located on the

circles of radii jaj
ð2kþ1Þ; k ¼ 0;y;m 
 2; respectively, and has a singularity on the

circle of radius equal to jaj
ð2m
1Þ: In order to obtain their exact value we use
Theorem 3.

We proceed as follows. By Theorem 3, for each kAf1;y;m 
 1g the sequence
fQn;kg; nAN; of the denominator polynomials of the Fourier–Padé approximants

relative to S
1
s converges to the polynomial Qk whose zeros are the poles of S
1

s
inside Dk: This is so because in each of the disks Dk this function has exactly k poles.

It follows that Qkð0Þ=Qk
1ð0Þ; ðQ0 � 1; Þ is equal to the pole which S
1
s has on the

circle of radius jaj
ð2k
1Þ: Let us calculate Qkð0Þ:
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From the definition of Rn;k it follows immediately that

Qn;kðzÞ ¼
1

Dnþ1;kðS
1
s Þ

zk zk
1 ? 1

/zkS
1
s ;jnþ1S /zk
1S
1

s ;jnþ1S ? /S
1
s ;jnþ1S

^ ^ & ^

/zkS
1
s ;jnþkS /zk
2S
1

s ;jnþkS ? /S
1
s ;jnþkS

���������

���������
:

Therefore,

Qn;kð0Þ ¼ ð
1Þk Dnþ1;kðzS
1
s Þ

Dnþ1;kðS
1
s Þ :

Using (26), we obtain

Qn;kð0Þ ¼ ð
1Þk Dn;kðS
1
s Þ þ *dn

Dnþ1;kðS
1
s Þ ; ð46Þ

where

lim sup
n

j*dnj1=nolk ¼ l̃k ¼ jajk
2

: ð47Þ

From (30) and (44)–(47), it follows that

Qn;kð0Þ ¼ ð
1Þkkn?knþk
1

knþ1?knþk

jajnkðk
1Þ
%a
ðnþk
1

2
Þk

jajðnþ1Þkðk
1Þ
%a
ðnþkþ1

2
Þk

1þ dn;1

1þ dn;2
;

where limn dn;1 ¼ limn dn;2 ¼ 0: Cancelling out equal powers of jaj and %a and taking

limit using (12), we obtain that

Qkð0Þ ¼ ð
1Þk 1

jajkðk
1Þ
%ak
:

Therefore,

Qkð0Þ=Qk
1ð0Þ ¼
1

jaj2ðk
1Þ
%a
; k ¼ 1;y;m 
 1;

as we needed to prove. &
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